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DYNAMICAL THEORY OF ELECTRON DIFFRACTION FOR THE
ELECTRON MICROSCOPIC IMAGE OF CRYSTAL LATTICES

I. IMAGES OF SINGLE CRYSTALS

By H. HASHIMOTO,t M. MANNAMI} anp T. NAIKIY
(Communicated by A. H. Cottrell, F.R.S.—Received 9 April 1960)
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The dynamical theory of electron diffraction is applied to the interpretation of electron micro-
scopic images of lattice planes of plate- and wedge-shaped crystals. The wave functions and
corresponding intensities predicting interference fringes on the exit surface of a crystal are derived.
It is shown in both cases that the fringes are composed of parallel lines and the spacing of the
fringes at the exact Bragg angle coincides with that of the original lattice but the positions of the
lines do not coincide with those of potential maxima in the crystal, i.e. intensity profiles of the
fringes do not represent the variation of mass-thickness in the crystal. The intensity profiles and
the spacings of the fringes vary with the thickness of crystal and the deviation from the Bragg
angle.

The fringes from a bent plate-shaped crystal, which are formed on the extinction contour
bands, show the same spacing as that of the crystal lattice along the centre of the contour but they
have an increased or decreased spacing near the edge of the contour. The fringes which are formed
on the subsidiary extinction contour also show spacing anomaly; they are shifted by half the
corresponding amount for the principal contour.

The spacing of the fringes of a wedge-shaped crystal coincides with that of the original lattice
at the exact Bragg angle, but the contrast of the lines reverses wherever the thickness of the crystal
increases by an amount of AE/2V, (A, wave length; E, accelerating potential; V,, Fourier coeffi-
cient of inner potential of the crystal). For deviation from the Bragg angle, the spacing of the
fringes, in general, does not coincide with that of the original lattice and, moreover, the contrast
of the lines reverses wherever the thickness of the crystal increases by an amount of AE/V,.

The anomalies of spacing and reversal of contrast which are expected from the present theory
were observed in the electron microscopic images of metal-phthalocyanine and sodium faujasite
crystals respectively.

The effects of absorption by the crystal and divergence of illumination on the contrast of the
image are discussed and the possibility of obtaining two-dimensional projections of the atomic
arrangement in a crystal by using electron microscopic images is also discussed.
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1. INTRODUCTION

It is widely known that Menter (1956a) was the first to observe the images of the lattice
plane (20T) of Pt-phthalocyanine crystals (spacing ag, = 11-9A) and lattice planes
(20T), (001) of Cu-phthalocyanine crystal (spacing agop, = 9-8 A, @49y, = 124 A) with the
electron microscope. After his observation, several authors observed the images of crystal
lattices with the electron microscope; Labaw & Wyckoff (1957) observed indanthrene
scarlet (a = 154, 19-3 and 28-1A), Menter (19565) sodium faujasite (a = 14-4A),
Bassett & Menter (1957) molybdenum trioxide (aq, = 6-93 A) and Neider (1956) Ni-
phthalocyanine (agp, = 9-8 A). Electron microscopic images of the super-lattice of
antigorite (¢ = 90 A) were also observed by Brindley, Comer, Uyeda & Zussman (1958)
and Uyeda, Masuda, Tochigi, Ito & Yotsumoto (1958). Ogawa, Watanabe, Watanabe &
Komoda (1958) observed the fringe of 20 A spacing in the image of the ordered alloy of
CuAu 11

The electron microscopic image of crystal lattices was discussed by Menter (19564) on
the basis of the kinematical theory of electron diffraction and Abbe’s theory of image
formation and it was concluded that the image should be equally spaced parallel fringes.
He measured (Menter 19566) the spacings of many fringes and showed that their average
coincided with that of the originallattice. Uyeda (1955) suggested before Menter’s observa-
tion that the image of the crystal lattice should be parallel lines. Niehrs (1954) discussed
the lattice image of MgO smoke crystal at the exact Bragg condition by the dynamical
theory of electron diffraction and concluded that the image at the wedge should be equally
spaced parallel lines with stepped structure. Niehrs (1956) further discussed the image of
resolved atoms in MgO smoke crystals. Uyeda (1957) reported briefly that, with increasing
thickness of the wedge-shaped crystal, contrast of the image and the amount of the step
will decrease due to the absorption of electrons in the crystal. Cowley (1959), by using the
theory developed by his group, interpreted the image of crystal lattices with various
thicknesses and suggested that a thin crystal may be represented as a phase grating but that
for a thick crystal the dynamic scattering of electrons in the crystal must be considered,
taking into account the amplitude-grating effect due to absorption. He suggested that for
a crystal for example thinner than 100 A, the image will appear not at exact focus but out
of focus. He suggested, moreover, that the stepped structure observed in antigorite fringes
is due to the simultaneous reflexion of electron waves. He indicated that the stepped struc-
ture of the fringes which appear on the exit surface of wedge-shaped crystals is also expected
from his theory. Lentz & Scheffels (1958) also suggested that the contrast of the fringe of
thin film with periodic structure is chiefly due to out-of-focus effects.

By using the dynamical theory of electron diffraction several authors have discussed the
contrast in transmission electron micrographs of crystalline materials. But their inter-
pretations were confined to the intensity of only the primary or reflected waves. Heiden-
reich (1949) and Hashimoto (1954) discussed the equal inclination fringes with subsidiary
maxima which appear in the ordinary electron microscopic image and shadow electron
microscopic image of bent crystalline film. Niehrs (1954), Hibi, Kambe & Honjo (19535)
discussed the equal thickness fringes which appear in the electron microscopic image of
a wedge-shaped crystal. Whelan & Hirsch (1957) discussed the intensity distribution of the
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electron microscopic images of a plate-like crystal containing stacking faults. Whelan &
Hirsch explained the intensity variation of the fringes by deviation from the Bragg angle
and the variation of the thickness of the crystal.

In the course of the analysis of moiré fringes (Hashimoto 1958), one of the present authors
supposed that the spacing anomaly will appear locally in the lattice image of a crystalline
film where the Bragg condition is not exactly satisfied. Such spacing anomalies in the image
were detected (Hashimoto & Yotsumoto 1959) in the micrographs of crystal lattices of
Cu- Pt- and Zn-phthalocyanine and antigorite. In order to explain the spacing anomaly
in the image in detail, it was found necessary to apply the dynamical theory of electron
diffraction to the single bent crystalline film. In this paper, the theory is applied to the
interpretation of the contrast of the image of single crystal lattices with different crystal
habit, such as wedges or plates, in various orientations to the incident electron waves.

In §§2, 3 and 4 of this paper, the dynamical theory is applied to the Laue case and the
wave functions and the corresponding intensities predicting interference fringes formed on
the exit surface of the crystal are derived, the absorption of electron waves being neglected.
In §§5 and 6 of this paper the absorption of electron waves and divergence of illumination
are discussed. In §7 numerical calculations are compared with experimental results, and
the possibility of observing the atomic arrangement in crystals by using the electron micro-
scopic images of the crystal lattice is also discussed.

In part II, application of the present theory to the interpretation of moiré fringes will be
presented.

2. WAVE FUNCTIONS CORRESPONDING TO THE IMAGE OF
LATTICE PLANES OF PLATE-SHAPED CRYSTALS

According to Abbe’s (1837) theory, the image of a crystal lattice is formed by the inter-
ference of the primary and reflected waves which have passed through the crystal. In this
section, the wave function corresponding to the well focused image by an ideal lens and
axial illumination is derived for the case of single Bragg reflexion. Functions for the primary
and reflected waves from plate- and wedge-shaped crystals have already been derived by

['2 vacuum

crystal
Wi %

vacuuim

4, s,

Ficure 1. Waves in a vacuum and a crystal.
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several workers using the dynamical theory of electron diffraction, developed by Bethe
(1928). They are, in particular, MacGillavry (1940), Thomson & Cochrane (1939),
Blackman (1939), Heidenreich (1949) and Kato (1952, 1953). In this section, Kato’s
theory is briefly outlined so that we may better understand the meaning of the notation
and that of the wave functions inside and outside of the crystal. Afterwards, the wave
function corresponding to the image of a crystal lattice is derived.

Let an electron wave,

Y(r) = Yexp2mi(K-r), (1)

which is accelerated by an energy E, enter a crystal through surface ¢ (incident surface)
as shown in figure 1, where ', K and r are the amplitude, wave vector and position vector of
the wave respectively. Then two waves ¥, and ¥, which are the primary and reflected
waves respectively, appear in the crystal if the crystal is at the Bragg angle.

Ficure 2. For legend see facing page.

The wave ¥(r) appearing in the crystal of the potential V(r) should satisfy the Schré-
dinger equation

Ve (n) + S (B V()] (x) = o, @)
where 2R V(r) = Ulr) = 3 Uyexp 2i(g 1), (3)

and g is the reciprocal lattice vector and all other symbols bear their usual significance.
As the solution of equation (2), y(r) can be expressed as

y(r) = 2y exp2m(k, r), (4)

g

where k, =k, +8. (5)
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By substituting equations (3), (4) and (5) into (2), one arrives at a system of linear homo-
geneous equations. As a single Bragg reflexion is excited, only the amplitudes ¥, and ¥,
have appreciable values, then the equations become

(K?,&k% Kgli—i g) (Zz) —o. (6)

£

Ficure 2. Dispersion surface and wave points for a plate-shaped crystal.

) |
o \
e

v &

O and G, the origin and a reciprocal lattice point.

E, wave point of incident wave and transmitted primary wave.

4, wave point of the transmitted reflexion wave. The plane of this figure is determined by the
vectors EO = K and OG =g.

S§, S and SP, S, spheres of large radius K and « centred on O and G.

L® and L@, kinematical and dynamical Laue circles, i.e. intersection of S& and S% and that of
S§ and S@.

L® and £, kinematical and dynamical Laue points.

n,, 1, normals of entrance and exit surfaces. They do not lie on the plane of this figure in general.

£OL®G|2, Bragg angle.

£OEn, = 0,, the angle between 7, and K.

£GAn, =0, the angle between 7, and K,.

00, deviation of the incident or primary wave vector from the Bragg angle.

0, deviation of the reflected wave vector from the Bragg angle.

BY and B®, two branches of the dispersion surface, approximately hyperbolic surfaces whose
asymptotic surfaces are S{ and S@.

A" and A®, wave points of the crystal waves.

4, and 4,, intersection of ${? and n,n, and that of S and #,n,.

4, wave point of mean value of crystal waves, middle point of 4,4,.

W and W', intersections of Brillouin zone boundary and dispersion surface.

X and X', intersections of normal of crystal surface passing through #® and dispersion surface;

XX = 2q.
WW' = 2¢ cos (03—80,) = XX cos (05—6,).
WM, perpendicular distance of W from S{? plane; WM = p.
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T Notation:
. ~ Wave vectors in vacuo.
< — incident: K = EO;
et
S — transmitted primary: K, = liq;
M= transmitted reflected: K, = AG.
)
= O Wave vectors in crystal:
E 8 primary: k{P = A0, k@ = A®0;

reflected: kP = AVG, k@ = AAG.
Mean wave vectors in crystal:

primary: Kk, = A40;

reflected: k, = AG.
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Resonance errors:
—_— —_— —— rd
APAV =2d, A4V =d,, A, 4P =d,, A,4,= 2t
Positive sense of the direction is taken as the direction toward the origin.
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464 H. HASHIMOTO, M. MANNAMI AND T. NAIKI ON THE

By considering the magnitudes «, x«,, k, kg\and the lattice potential, we obtained the
dispersion surface (equi-energy surface) for an energy E,

(k9 —1o) (x, —K,) = [U,[*/4x?, (7)
where «? = (2me/h?) (E+V,) = K2+ U, (8)
This gives a hyperbolic surface close to a Bragg reflexion as shown in figure 2. Ifa wave point

is given on the dispersion surface, the wave vectors and the ratio of amplitude of primary
and reflected waves are determined. From equation (6), the ratio of amplitudes is given by

C =¥ = 2o(kg— k) [ = U, = = Uf2,(x,— k). (9)
The symbols are listed in the legend of figure 2.

The wave points and corresponding wave vectors in the crystal for a given wave vector
K in vacuo are determined by the requirement of tangential continuity of wave vectors on
the crystal surface as indicated in figure 2. Then it is seen that a pair of waves corresponding
to the two branches of the dispersion surface appear in the crystal for the primary and
reflected waves respectively. They are expressed by

yP(r) = yPexp2nmi(k r), .
10
yO(r) = Y@ exp 2m (k@ 1), (primary waves), (104)
YyO(r) = yPexp 2mi(kP r),
flected _ o
Y2 (r) = 2 exp 2mi(kP-r), (reflected waves) (10b)

The wave points of primary and reflected waves in vacuo outside of the & surface (exit
surface) are also determined by a similar requirement and the wave functions of the trans-
mitted waves can be expressed by
®y(r) = ®,exp 2mi (K, 1), (11a)
O,(r) = O, exp2mi(K, r). (115)
The amplitudes ¥§, y@, ®©, and @, are determined in terms of ¥* by the boundary
conditions on the planes ¢ and b expressed as

P(r) = p(r,), (120
T o) = 2 yr,), (120)

where @(r,) and ¥ (r,) are wave functions on both sides of the boundary surfaces, r; the
position vector indicating a point on the surface. Equation (12a) can be satisfied only
when the components of K, £, £¥ tangential to the surface are equal. It is usual in
transmission electron microscopy that the normal components of all wave vectors are large
compared with the difference among themselves, because the waves enter the crystal nearly
normally. In such a case, these two conditions are approximately equivalent.

Thus the boundary conditions on both boundary surfaces are expressed as

3 i) =),
> ¥2(r,) =0,

i=1,2

Oy(r,) = i=§2 ¥e(rs),

O ) = 3 90,

} (on the a-plane), (13)

} (on the b-plane). (14)
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By inserting (1), (10a) and (105) into (13), the amplitudes of the crystal waves turn out

to be ,
COCO (1) ‘ .
V= co—co ( C(i>) Wexp2m(K—k§-R,), (154)
Yo — COYY, (155)

where (—1)' means (—1) and (1) for ¢ = 1 and ¢ = 2 respectively, and R, means the special
case of r, when it is normal to the entrance surface.

Similarly, by substituting (10a), (104), (11a), (115), (15a4) and (155) into (14), the
amplitudes of transmitted waves turn out to be

coe® (=1) Q. 1)

D, = co—cot 2 7o exp 2m(K—Kk{-R,) exp 27 (kP —K;*R,), (16a)
cHCc® . . o .

O, = CO— > (—1)iexp2m(K—k{ R,) exp 27i(k? —K,'R,), (16b)

i=1,2

where R, has the same meaning as R, corresponding to the exit surface.

Since the object of this section is to obtain theoretically the wave function of a well-
focused transmission electron microscopic image, it is sufficient to evaluate the wave func-
tion @(r) at point r, on the exit surface of the crystal. ®(r,) is written from equations (164),
(165) and (9) as follows:

D(r,) = Dy(ry) + Dy (1)

—C®
= CH_(® Wexp 2m{(K—k{’ R,) + (k{’ K, R,) + K, 1y}
co
+ Aa CH__(® Wexp 2mi{(K—kP-R,) + (kP - Ky R,) +- K, 1.}
_CC®
+- OO Yexp 2711{( —k{’'R))+ (kP —K, R,) +K, 1.}
coe® @ @
+C(1) 0(2)‘I”exp 2m{(K—-k@ R,)+ (k?—-K,'R,)+K, 1} (17)

The deviation from the Bragg angle is expressed by a parameter named the resonance
error. This parameter is introduced here by the quantity

A, =2t or A®AD = 2d, (18)
as indicated in figure 2. At the Bragg angle, they become

t=0 and d=gq. (19)

From the relation of a hyperbola and its asymptote, it is seen that
—dydy = ¢* (20)
d= (4. (21)
Then d,—d,=2d, (22)
d,+d, = 2t. (23)

From equations (7), (20) and figure 2, it is seen that
q = |U,|/2¢ /(cos 0, cos 0,) = p/./(cos b, cos ). (24)
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466 H. HASHIMOTO, M. MANNAMI AND T. NAIKI ON THE
As the Fourier coefficient of lattice potential V, is given by
h2
& 2me &
P 1s given as p =V, |2AE. (25)

In terms of 0,,, which is an angle of deviation from the Bragg angle, the resonance error
is written as (Hashimoto 1954)
2t = Kk, sin 20 5/cos b, (26)

The ratio of amplitude shown in equation (9), then, is expressed in terms of the parameter d,
from the geometry of dispersion surface, as follows:

Ch — —d, cos (90//), C?=_— 5 COS 00/[) (27)

It is convenient at this stage to introduce the mean value of wave vectors in the crystal.
In figure 2, 4 represents a wave point with the mean value for the crystal waves.
From the geometry indicated in figure 2, it is seen that

K§ — ky+(—1)id, (28)
kY =k, +(—-1)id, (29)
K =K, (30)
Kg:K0+g"2t> (31)
where k, and k, are the mean values for the crystal waves.
Using the values of C%, k§ and k% given in (27), (28) and (29), we rewrite (17) as
®(r,) = ;—?‘Fexp 2m{(k,—K,):Z—d-Z+K;-r,}
gd‘P'exp 2mi{(k,—K,) ‘- Z+d-Z+K,'r,}
—sk Wexpmi((ky—Ky) 2~ d-Z+ K, x,
_ b . .

todeo 50, 57— Yexp (2ni{k,—~K,) - Z+d-Z+K, r,} (32)

where Z = R, —R_; the thickness of the crystal.

3. INTENSITY PROFILE OF THE IMAGE OF A PLATE-SHAPED CRYSTAL

The current density of electrons is proportional to @(r) ®*(r) |K|cosd, the intensity
distribution of electron waves at the exit surface of the crystal expressed as

I = ®(r,) ®*(r,) |K|cosb, = (I;+1,) |'V|? | K| cos b, (33)
where I, = 1—(q?/d?) sin? 2nd-Z+ ( p*/d*cosb,) sin? 2nd - Z, (33a)
I, = Bsin 2n(g-x+f), ' (330)

f = (1/2n)sin! (¢sin? 2nd-Z /) /{(—}d)?sin? 4nd - Z + 2sin* 2nd - Z}),  (38¢)
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B =2 /{(—4d)?sin?4nd-Z +*sin* 2nd-Z} ( p/d*cos ), (33d)
g'x=g-r,t (33¢)
and « is the co-ordinate on the b-surface.

The term I, represented by (33a) is a uniform intensity corresponding to the background
of the image. This is nearly equal to unity and equal to the intensity of the incident beam,
because the intensity of the primary wave is expressed as

1, = @y(r) DE(r) |K| cosf, — {1 -Z—zsin‘ZZﬂd-Z} |W|2|K | cos b, (340)
which corresponds to the first and second terms, and the intensity of the reflected wave is
expressed as

I, = @,(r) ®¥(r) |K| cos b, = {(p?/d?cos b,) sin?2nd - Z} |¥'|? |K| cos b, (345)
which corresponds to the third term in equation (33a).

Equation (335) gives the periodic intensity in the image. From these equations one can
easily understand that the image becomes a set of straight lines which are parallel to the
lattice plane concerned and the intensity profile is represented by a sine curve with the
spacing of the fringes given by 1/|g| = a, where a is the spacing of the lattice planes. The
positions of the fringes vary with the value of the phase f, i.e. of the parameter d (or f)
and the thickness Z.

At the exact Bragg angle (¢ = 0), f becomes zero; then, the periodic term of the image
(330) is given by, when cosf, = cosf, = 1,

I, = —sindnpZ sin 278X = — Asin 2ng * X, (85)

where 4 = sindnpZ. Thus the first intensity minimum of the fringes is at the point shifted
in the positive direction of ¥ by an amount }a from the origin, when 4 is positive.

It is generally believed that the intensity profile of the electron microscopic image repre-
sents the variation of mass-thickness. In the image of a crystal lattice, however, this does
not hold any longer. If the structure of the crystal is simple and the origin coincides with
the centre of symmetry, the mass thickness in the crystal will certainly have a maximum
at the origin, because the lattice points (atoms, ions or molecules) are located generally at
the centre of symmetry. Therefore the intensity minimum of the fringe should appear at
the origin. But in reality, the intensity minimum shifts by an amount of 1q, i.e. an image
of the crystal lattice does not indicate the mass-thickness in the crystal.

As can be seen from equations (33) and (35), the sign of p decides the sign of the amplitude
of the fringes when the thickness is constant, i.e. from equation (25) the sign of the Fourier
coefficient of inner potential V, decides the mode of maxima and minima of the fringes.
If the sign of V, is negative, the intensity minimum of the predicted fringes changes to a
maximum. If the crystal has no centre of symmetry, V, is expressed as |V,| e, where ¢
is the phase angle of the crystal. In such a case, equations (335) and (33¢) are written as

I, = Bsin{2n(g -x+f) — ¢}, (36)
B =2, /{(—4d)?sin?4nd - Z+¢*sin* 2nd - Z} (| p|/d*cos b,). (36a)

The fringes, therefore, are shifted by an amount ap/27.
1 In equation (33), (g8 —2t)-r, is replaced by g-r,, because 2t is normal to the crystal surface and the

fringes are on the exit surface of the crystal.

57 Vor. 253. A.
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468 H. HASHIMOTO, M. MANNAMI AND T. NAIKI ON THE

Figure 3 shows how this function varies with d (or ¢) and dZ in the range —} < gr < 4,
i.e. 1a < x < }a. This function is periodic in dZ and gx with period § and 1 respectively.
The full and dotted curves refer to ¢ positive and negative respectively.

The intensity profile of the fringes of a plate-shaped crystal is given by the condition
Z = C, where Cis constant. In the diagram of the co-ordinates d against dZ, aline of Z = C
passes through the origin d = 0 as shown in figure 4. Then the fringes of a plate-shaped
crystal with various thicknesses and in various conditions are easily obtained from the
curves shown in figure 3.

t=0 ('o-glq) (075¢) (0-959) (112¢9)
4=q 57 8 84 2y

dzZ=0
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Ficure 3. The theoretical intensity profile I of the crystal lattice fringes as a function of g+ x. The

- different curves correspond to various values of d (or ) and dZ. At d = ¢, i.e. at the Bragg-

reflecting position, it is clearly seen that the intensity maxima shift by half the fringe spacing
wherever the thickness becomes n/4¢q. For d = ¢, i.e. for the position deviated from the Bragg
angle, intensity maxima shift gradually with increasing thickness and wherever the thickness
becomes 7/2q, the intensity maxima shift by half the fringe spacing.
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At the Bragg angle, the profiles of the fringes are given by those on the co-ordinate
d=gq, (t=0), in figures 3 and 4. The intensity and position of the fringes change with
thickness. The variation of the fringes is schematically indicated in figure 5.

As can be seen in figure 5, wherever the thickness becomes Z = n/4g wheren = 1,2, 3, ...,
the fringe has a stepped structure with a shift of halfthe spacing. The value 1/4¢is equivalent
to half the period of the beat of intensity of primary and reflected waves, i.e. as can be seen
from the equations (344) and (344), the nodes of the reflected wave will appear at
Z =1/2q,2/2q, .... As the fringe in the image is formed by the interference of primary and
reflected waves, it is probable that the fringe disappears at the nodes of primary and
reflected waves and has maximum intensity at the thickness where the intensity of primary
and reflected waves are the same.

t=0 ¢

0 d=q d

az

Ficure 4. Reference diagram of figure 3, showing the lines of Z = C
in the co-ordinate d against dZ.

For a deviation from the Bragg angle, the profiles of the fringes are given by those on
the co-ordinates d = ¢, (¢ = 0), in figures 3 and 4. The profile and position of the fringes
vary both with the degree of deviation from the Bragg angle and with increase of thickness.
In figure 6, the variation of the fringe due to the increase of thickness is schematically
indicated for the cases of # = 0-1¢, ¢ = 0-5¢ and ¢ = ¢.

As can be seen in figure 6, at large deviations from the Bragg angle the fringes shift
gradually as the thickness increases and moreover the steps at the thickness 1/4d, which
appeared in figure 5, disappear. In this case, the steps of half the fringe spacing appeared
wherever the thickness became 7/2d, where n = 1,2, 3, ....

The fringes of a bent plate-shaped crystal are formed on extinction contour bands.
Along the middle line of an extinction contour band the Bragg condition is exactly satisfied
and near the edge of the contour the Bragg condition is not exactly satisfied. Therefore, the
variation of the fringes due to the deviation from the Bragg angle will also appear on an
extinction contour band. Ifa crystal is bent into the form of a cylinder of radius R as shown
in figure 7, at the point 4, the Bragg condition is exactly satisfied and at the point B, located
a distance S from the point 4, the Bragg condition is not exactly satisfied. The angular
deviation 6,, of the incident beam at the point B from that corresponding to the exact
Bragg condition is equal to the angle of bending « of the crystal. From equation (26),

N cos Oy
R 2= 0= ksin20," "

l

7 (37

57-2
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t=20
crystal surface

jim fé}.oi‘o;“

N
)

F1Gure 5. Schematic diagram obtained by a study of figure 4, showing the variation of the fringes
with varying thickness at the Bragg reflexion position. The dark strips in the figure represent the
positions of the minima and their intensity distribution.

t=01q 0-5q q
0 - 2a 5a 2a 5a — 20 S5a X
BI C, DI
1
4d
i‘l / / /
3
4’& / /
B c D
4
4d
VA .

Ficure 6. Schematic diagram obtained by a study of figures 3 and 4, showing the variation of the
fringe with varying thickness for a deviation from the Bragg reflexion positions, (a) ¢ = 0-1g,
(b) t = 0-5¢, (¢c) ¢ = g. The strips represent minima in the intensity profile, d = /(2 +¢?).
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Therefore, the distance §' is proportional to the parameter ¢, the deviation from the Bragg
angle. As the fringe profiles of the bent crystal of uniform thickness are indicated by those
on a line of Z =C in the diagram shown in figures 3 and 4, the variation of the fringes on
an extinction contour band can easily be seen. In figure 8, fringes of a bent crystal whose
mode of bending is as shown in figure 7, i.e. convex to incident beam, on an extinction
contour band and its subsidiary are schematically illustrated for four different thicknesses.

The lines represent minima in the intensity profile and the thickness of the lines represents
the intensity of the lines. The equally spaced thin lines whose spacing is the same as that of
the original lattice represent the positions of the same kinds of centre of symmetry in the
crystal, one of which is adopted as the origin in the present consideration. As was stated
above, in the crystal with a very simple structure, lattice points are located generally at the
centres of symmetry. Then if the electron microscopic image of a crystal lattice represented
the mass thickness in the crystal, the fringes would appear exactly on the thin lines.

extinction contour

\\ bent crystal

Ficure 7. Cross-section of a crystal bent into a form of cylinder of radius R indicating
the relation of the Bragg reflexion and the extinction contour band.

As can be seen in this diagram, at the thickness of 1/8¢, which corresponds to about
300 A for the image of the (20T) plane of Pt-phthalocyanine, the fringe along the middle
line of the extinction contour band indicates the same spacing as that of the original lattice
and has maximum contrast, but near the edge of the contour the fringes have greater spacing
and smaller contrast. The shift of the lines due to the increased separation is half the spacing
near the edges of the contour. On the subsidiary extinction contour band, the spacing of
the fringes is larger than that of the original lattice and the positions of the lines shift
by an amount equal to half the spacing on both edges of the contour.

At the thickness 2/8¢, fringes do not appear along the middle line of the extinction
contour and the fringes near the edge of the contour have increased spacing. At the thickness
3/8¢, the contrast of the fringes at the middle of the contour is the reverse of that for the
thickness 1/8¢, i.e. the positions of the lines shift by half the fringe spacing, and near the
edge of the contour the separation of the fringes is increased rather than decreased. At the
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thickness 4/8¢, the fringes do not appear along the middle line of the contour and have
increased spacing near the edge of the contour. The variation of the fringes on the sub-
sidiary contour for each thickness is nearly the same as for the thickness 1/8¢.

The variation of the fringes between the thickness 0 and 1/2¢ described above is repeated
for thicknesses between 1/2¢ and 1/g, if the absorption is neglected. In general, the spacing
of the fringes near the edge of the contour is larger than that near the middle line and the
intensity of the fringes near the edge is less than that near the middle line.

principal contour 0 subsidiary contour
VR t—~ y z

e

s

Ficure 8. Schematic diagram obtained by a study of figures 4, 5 and 6, showing the change of
appearance of the fringes of a bent crystal with a mode of bending as shown in figure 7, as the
thickness is varied. The lines represent the positions of minima in the intensity profile and the
thickness of the lines represent the intensity of the profile. The equally spaced thin lines represent
the positions of the centres of symmetry in the crystal, where mass-thickness in the crystal shows
certain maxima or minima in a simple crystal. Thickness 1/8¢ corresponds to 300A for (201)
plane of Pt-phthalocyanine.

4, WAVE FUNCTION AND INTENSITY PROFILE OF THE
IMAGE OF A WEDGE-SHAPED CRYSTAL

The image of a crystal lattice which seems to have a thickness anomaly has often been
observed in electron microscopic images. In this section the image of such a crystal is
treated.

Let us assume here, for simplicity, that the crystal is wedge-shaped with two flat
surfaces not parallel to each other and that both areas are large enough for the effect of the
edge to be neglected, i.e. the tangential continuity of wave vectors holds approximately. The
incident wave is assumed to be nearly normal to only one surface, the entrance surface (a),
and waves in the crystal are assumed to leave only from another surface, the exit surface ().
Itis further assumed that the wave vectors of the beams are nearly normal to the boundary
surfaces so that the normal components of all wave vectors are large compared with
differences among themselves.
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Under these assumptions, as was suggested by Kato (1952), crystal waves can be
determined by the entrance surface independent of the exit surface and the transmitted
waves which are connected with the crystal waves are determined only by the exit surface.

In order to interpret the various kinds of lattice image of a wedge-shaped crystal it is
sufficient to interpret the following two kinds of lattice image. One is an image of lattice
planes parallel to the edge of the wedge (yz plane shown in figure 9 (¢)) and the other is
an image of lattice planes perpendicular to the edge of the wedge (xz plane shown in
figure 9 (b)).

In the case shown in figure 9 (a), the preceding interpretation of the image of a plate-
shaped crystal is not applicable, because the exit surface is not parallel to the entrance
surface. However, as stated above, the transmitted waves which are connected with the
crystal waves can be determined by the exit surface only.

! /
/N

Ficure 9. Two kinds of lattice plane in a wedge-shaped crystal and the waves in the crystal and
in vacuo. If rectangular co-ordinates are taken as follows, ¥ and y are normal and parallel direc-
tions to the edge of wedge respectively and z is normal to xy plane, two kinds of lattice plane
are indicated by yz plane and xz plane as indicated by shading in (a) and () respectively.

The wave points of the transmitted waves are determined on the dispersion surface shown
in figure 10 by the condition of tangential continuity. As the normals #, and #, are not
parallel to each other, the two wave points, B» and B®, or transmitted primary waves, do
not coincide with that of the incident wave E, and they are separated from each other.
Similarly, those of the reflected waves, C® and C® are also separated.

By using the wave vectors given in figure 10, the wave functions of the transmitted wave
are written as follows,

Or) = @y(r) +By(r) = 3 O(r)+ 3 O(r), (38)
i=1, i=1,

DY(r) = DY exp 27i (K@), (38a)

D9(r) = DPexp 27 (K9 r). (385)

The boundary condition on the 4 plane is as follows:
Of(r,) = ¢g)(rb),}
®9(r,) = ;).

By substituting (9) and (38) into (39), the amplitudes of the transmitted waves become

(39)

L cwe® (—1) , . -

= co—co ( C(i) yexp 2ni{(K—KkfPR,) 4 (k§ —K§R,)}, (409)
(i) chee i 1 (&) @) @

D = ~i— o (— 1) exp 2mi{(K—kPR,) + (k9 —K?-R,)}. (400)
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From the geometrical construction shown in figure 10 the following relations are obtained:
kP = k,+(—1)id, (41a)
k) — K+, (412)
K = Ko+ (—1)i¢'dU,, (41¢)
KY =K, +(—1)ia'dU,, (414d)
ngKO = g—l: (42)
Z=R,—R, ‘ (43)

_ 2tcosl, |«—K|—icosby . .

= cos (@ —0) — cosd, sina’ tan 20, = 2¢, (44)

——
where U, is a unit vector parallel to GO.

(a)

(b)

K 2)

' VK
KoK KS  KGK, 7
Ficure 10. Dispersion surface and wave points for a wedge-shaped crystal. 4, B and C are the mean
wave points of AV, BV and CV,
BC=1, [BOBY|= |2ad|=[COCD|, EO=K, BYO =K,
BP0 =K@, BO=K, C"G=K9, CC=K, CO=EKQ.

Then, the wave function of the transmitted wave (34) is rewritten as follows:

O(r) = g—;exp 2mi{K-R,+k,* Z} o
x [{d,exp2mi(d-Z+o'dU, R) —d,exp 2ni(—d-Z—a'dU,R)}exp 2mK,: R
+plexp 2mi(d-Z+a'dU,R) —exp 27mi(—d-Z—a'dU, R)}
x exp 2mi(K,-R+8-R,)], (45)
where R =r—R,.
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In the present case, the focus cannot be adjusted to the whole portion of the exit surface,
because the exit surface is not perpendicular to the incident beam. Therefore let us assume
that the focus is adjusted to a point ¢ on the exit surface, which is an intersection point of
the normal to the exit surface passing through the origin and the surface asshown in figure 11.
The interference fringe on the exit surface can be projected to the image plane. Then, by
using the relations

r=r,=X+y+R,, |z|=|Z|—-ax, g8 y=¢'R,=adU, y=1'y=0, (46)

R./\Rs

Z
Izl

e i o

4
9

Ficure 11. Cross-section of a wedge-shaped crystal. O, origin; C, object point
to which focus is adjusted, Z =R, —R,, |z| = |Z]| —a'x.

Ficure 12. Dispersion surface construction, showing the relation between g, 1 and g —1.

we can obtain the following intensity profile corresponding to the image:

I=(I,+1,) |¥|*|K| cosb,, (47)
2 2 '
I — lw(%ésin22nd-z+a—fé§zsin2 ond-z, (470)
I, = Bsin 2n{(g —1) -x+f}, ' (475)
B =2 /{(—1d)2sin? 4nd -2+ sint 2nd -z( pld2cosb,)}, (47¢)

f = (2m)~'sin~! {tsin22nd z//{(—id)?sin?dnd -z +2sint2nd -2z}},  (47d)

where |z| is the local thickness of the crystal corresponding to the predicted fringes.

By comparing equation (47) with equation (33), we can easily understand that the
intensity profile of the fringe has a form similar to that for a plate-shaped crystal. In the
present case, however, the thickness |z| varies linearly along the direction normal to the lines

58 ‘ VoL. 253. A.
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of the fringe. Therefore, both the intensity and the position of the fringes change with the
thickness of the crystal. For example, the spacing of the fringes is not given uniquely by
the relation from equation (475) (B—1)x,— 1 (48)

because the thickness |z| in the term f varies with co-ordinate x. By referring to the dis-
persion surface construction shown in figure 12, we can see that the spacing of the fringes

is given in the form, %], = 1/{]g]— 1] o +8.), (49)

where £, is the additional term corresponding to the phase term f, i.e. corresponding to
the shift of the fringes due to the deviation from the Bragg angle. At the exact Bragg angle,

¢t = 0, the spacing is given by Ix,| =1/|g| =a (50)

t=0 0lq
[

059 9
/ b 5 A&

Ficure 13. Schematic diagrams of the fringes of a wedge-shaped crystal at the Bragg angle (a)

and at deviated angles (b), (¢), (d).

(a) t=0; (b) t=0-1g, corresponding to 0,, = 8:6 x 10~ rad for (201) plane of Pt-phthalo-
cyanine; (¢) ¢t = 0:5g, 0,y = 43 x 1073 rad; (d) ¢ = ¢, 0, = 8:6 x 103 rad.

The spacing of the scale shown at the upper end of each fringe is different in each case and
given by 1/(|g] —o’|1| +4,) = af (1 - 21aa).

The appearance of the fringes for the wedge-shaped crystal is shown in figures 5 and 6.

At the exact Bragg angle, the fringes are given by the intersection with a line 44’ shown
in figure 5. The spacing of the lines drawn in the schematic figure 5 should be 1/|g| = a in
the present case, according to equation (50). A schematic diagram of the fringes is given in
figure 134. The contrast of the fringes reverses always with a thickness increase of n/4q
(n=1,2,3,...) and so the fringe lines between the thickness 1/4¢ and 1/2¢ are observed as
if they shift by an amount of half of the spacing relative to those between 0 and 1/44.

At a position deviated from the Bragg angle, the fringes are given by the intersection
with the lines BB’, CC’ and DD’ in figures 6 (a), (b) and (c) respectively. The spacings of
the lines drawn in the diagrams should not be given in the present case by 1/|g| = a but
by 1/{|g|—a"|1|+f,} = a,. The schematic diagram of the fringes is illustrated in figures
13 (b), (c) and (d). At the thickness 7/2d, the fringes fade out, and with increasing thickness,
fringes appear again with a shift of a,. The spacings of the fringes vary considerably near
the portion where the thickness of the crystal is n/4d.

In the case shown in figure 9 (), wave vectors of the primary and reflected waves which
leave the crystal are in two planes nearly parallel to the yz plane due to the refraction effect


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DYNAMICAL THEORY OF ELECTRON DIFFRACTION. I 477

at the wedge of the crystal. Wave vectors in the crystal and iz vacuo are determined from the
construction of the dispersion surface, as indicated in figure 14. Symbols for wave points,
wave vectors, the normal of crystal surfaces and resonance errors are the same as those
shown in figure 10.

wedge-shaped crystal

dispersion
surfaces

Ficure 14. Dispersion surface and wave points for the wedge-shaped crystal shown
in figure 9 (). Symbols are the same as those shown in figure 10.

By using the same process as in the case shown in figure 9 (), the wave function and
corresponding intensities on the exit surface of the crystal can be derived. The intensity
profile of the fringe is given by

I— (L+1) [¥]2 K| cos by (51)
I, = 1—(¢?/d?) sin?2nrd -z + ($%/d*cos ) sin?2nd -z, (51a)
L= Bsin{(g—1)-y+8, (515)
B = 2,/{(—4d)?sin?4nd -z +2sin* 2nd -z} ( p|d? cos 0,), (51¢)
£ = (2m)~1sin~! [¢sin? 2nd - z//{(—}d)?sin? 4nd -z +2sint 2 d - 2}], (514d)
[1] = 2|t|/cos«’. (51e)

By comparing equation (51) with equation (33), it can easily be seen that the intensity
profile of the predicted fringes is also given by an equation similar to that for a plate-
shaped crystal. Therefore, by studying the intensity profile shown in figures 3, 4, 5 and 6,
the fringes corresponding to the lattice image can easily be observed.

In the present case, the thickness |z| varies linearly along the direction of the x-axis and
fringes are formed parallel to the x-axis. The spacing of the fringes is given by

(g-1)y=1 (52)
58-2
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By referring to the dispersion surface construction shown in figure 14, it can be seen that
the spacing of the fringes is given by
f v, = 18] = @ (53)
because y*1= 0.

In figures 15 (a), (8), (c) and (d) the fringes corresponding to the exact Bragg angle and
positions deviating from the Bragg angle are indicated. In figure 15 (), the fringes at the
Bragg angle are shown and in figure 15 (b) the fringes at a deviated position are indicated,
with an angle of deviation corresponding to Ax = 8:6x 10~*rad for the (20I) plane of

I

Ao

o
i %\&% (i :W

L (W

Ficure 15. Orientations of the wedge-shaped crystal and corresponding lattice fringes. (a) at exact
Bragg angle; (b) at deviated position from Bragg angle. ¢=0-1¢ corresponding to
Opo = 8-6x10-*rad for (201) of Pt-phthalocyanine; (¢c) ¢=0-5g, 0, =43x1073 rad;
(d) t=gq, 05y =86 x 1073 rad.

for the same plane.

t=0

As can be seen in figure 15, the fringes have a stepped structure with periods given by
(1/4¢g) tana’ and (1/2d) tana’ for the situations at the Bragg angle and at deviated angles
respectively. In the case of (20I) plane of Pt-phthalocyanine of wedge angle

o' = 14°30" = 1/4rad,
the period (1/4¢) tana’ is 2800 A.

At the thicker portion of the wedge-shaped crystal, absorption of electrons cannot be
neglected. The effect of absorption is presented in the following section.

5. EFFECT OF ABSORPTION

The intensities of primary and reflected waves in a crystal are decreased by the inelastic
scattering of electrons. The effect of inelastic scattering on electron diffraction by crystals
was studied theoretically by Yoshioka (1957). He interpreted the effect on the dynamical
theory of electron diffraction and concluded that the absorption coeflicients ¢; of the two
sets of waves k{, k®, where ¢ = 1 and 2, are different and are given by

. — 47rme{~—000 2me V| Cy, :
Y k%, \cosly, Ry (&+7;) cos by’

(54)
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where Cy, and Cy, are the imaginary parts of additional terms to ¥ and V, respectively and
&, 1; are resonance errors which are given to the first approximation by the relation

2
&i-m;i =v(hTmKe—0) IVgIZ' (65)

Uyeda (1957) briefly reported that as the thickness of the crystal increases, the contrast
and the amount of the steps in the fringes of wedge-shaped crystals as shown in figure 15 will
decrease owing to the absorption of electrons.

In this section, the intensity profile of the fringe is discussed with the absorption taken
into consideration quantitatively, following Yoshioka.

By using two absorption coefficients given by equation (54), the wave function of the
transmitted waves on the exit surface of a plate-shaped crystal is expressed as

®(r,) = (1/2d) VY exp 2ni{(k,—K,)* Z+ K, r}
x [{d, exp (— 46, Z+2mid-Z) —dyexp (—%e,Z—2mid-Z)}
+ (pexp2mig-r/cosd,) {exp (—}e, Z+2nid-z) —exp (—}e,Z—2mid-Z)}]. (56)
Then the corresponding intensity profile of the fringes will be given by
I, = ®(r,) ®*(r,) |K| cost, = I |¥|?|K]| cos b, (57)

— aldexp (—16,2) —dyexp (— 3, 2)Y — ag?exp {— (e ) Z) sin? 2nd - Z)

2
+ Wl)“r [{exp (—46,Z) —exp (—§6,Z)}*+ 4sin? 2nd - Z exp {—3(¢, +€5) Z}]
442 cos ¢9g

Mgzgis.gg_exp{_%(elJrez) Z}sindnd-Z sin2ng 1,

+§J‘2é%§7g [{d, exp (—¢,Z) +dyexp (—¢6,Z)} — 2t exp {— (e, +¢5) Z}
x cos4nd-Z] cos2ng-r,. (57a)

The first two terms indicate the intensity of the background of the fringes and the third
and fourth terms represent the periodic terms of the fringes. As can be seen from equation
(57), with increasing thickness of the crystal, the intensity of the background and the con-
trast of the fringes decrease and moreover the position of the fringes will be shifted.

At the exact Bragg angle (¢ = 0, d = ¢), the intensity profile of the fringes turns out to be

I = i{exp (—36,Z) +exp (—$6,2) P +i{exp (—$6,Z) —exp (—36,2)}1
—exp (—{3(¢;,+¢€,) Z}sindnd-Zsin2ngr,
+3{exp (—¢,Z) —exp (—¢y,Z)} cos 2ng 1, (58)

where cos §, = cos 0, = 1. By comparing with equation (33), it can be seen that the contrast
of the fringes is decreased by the coeflicients of absorption and the position of the fringes
shifts by the effect of the fourth term and, moreover, at dZ = n/2 the fringe does not dis-
appear but shows minimum contrast. |

Intensity profiles of the fringes due to the variation of thickness were numerically cal-
culated for the case of an MgO crystal. By referring to the values calculated by Yoshioka
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and the intensity anomaly of doubly refracted waves observed by Honjo & Mihama (1954),
the values of Cy, and C,, were estimated to be Cy, = —1:5V, and Cp, = 0-3V. Then, for
example, at the exact Bragg angle ¢ =1-9x10°cm™! and ¢, =2:9x10°cm™! were
obtained. In figure 16, the intensity profiles are schematically illustrated for various
thicknesses, where dotted curves represent those of negative value of ¢. From equation (58),
it can be seen that the thickness which gives one-tenth intensity of the incident wave is
about 950 A. As the values of V5, and Vyyq, are calculated as 7:8 V and 5-4 V respectively,
950 A corresponds to dZ = 4-4/4 and 3-1/4 for (200) and (220) planes respectively. By
referring to these values, two kinds of fringes which are expected to be observed at the wedge
of an MgO crystal are indicated in figure 17. As can be seen from figure 17, the variation of
the fringes due to the variation of thickness is similar to that with no absorption. However,
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Ficure 16. Intensity profiles of the fringe of an MgO crystal suffering from absorption for various

thicknesses and deviations from the Bragg angle. Dotted curves represent those for negative
values of &. V, =4V, E = 80kV (cf. figure 3).
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the intensity of the background and the contrast of the fringes are decreased and, moreover,
the amount of the shift of the fringes at the thickness n/4p is not }a but becomes smaller as
the thickness increases.

(200)

N7
Froure 17. Two kinds of wedges of an MgO crystal, and the corresponding fringes which
are formed by the reflexion from (200) and (220) planes (¢ = 0).

6. EFFECT OF DIVERGENCE OF THE ILLUMINATION

In an ordinary electron microscope, the illumination is not perfectly axial but has a
small angular divergence. In this section, the effect of divergent illumination on the
contrast of the image at exact focus is discussed using the dynamical theory of electron

diffraction.
Aby,

iy

Ficure 18. Divergent beam whose semi-angle of divergence
is Af,, irradiates a crystal of thickness Z.

crystal

Let us assume that the divergent beam whose semi-angle of divergence is Ad,, irradiates
a crystal as shown in figure 18. If the axial beam enters the crystal with a resonance error ¢
(or d) to a lattice plane of the crystal, a beam which is inclined to the axis with an angle
Ad,, will enter the crystal with a resonance error (¢ A¢) to the same lattice plane, where
At is a resonance error corresponding to the angle Af,, and the relation is given by
equation (26), i.e. At = G.Aby, (59)
where G = «ksin 20y/2 cosd,.
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The intensity profile of the fringes of the crystal lattice illuminated by the divergent
beam may be expressed, by assuming Af,, is very small (~ 10-2 ~ 10~3rad),
0A0+A0

Ao
1(t-+A8) = I(00+ Alno) :f 1(00) A040/280 59 = 1(050) +51" (0s0) (Alag)*+ ...,

BAQ—AaA(_) (60)
where 1(6,,) is equal to I of equation (83) and 1(6") is given by

_ pGPsin2ng-x

() d®cos

[(d%2—3G20%+ 167%2%d%0°G?) sin 4nd - Z
+4nd-Z(3G20?—d?) cos 4nd-Z]

2sz60:§52£€ = [262(4G0? — d?) sin? 2nd - Z

© 4-2nd-ZG?*(3d2— 5G20?) sindnd - Z -+ 8m2Z2G402 cos 4nd-Z]. (61)

+

dZ 7N

/—'\\ //, -~ \\
\y
1 /\ i P qmpann~N R 7 /
16 \/ ° — © o
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A 16

0 »g?‘

Ficure 19. Intensity profile of the fringes of a crystal at the exact Bragg angle illuminated by
a divergent beam of Af,, = 5x10-3 rad for the case of spacing 12A and V, = 2-4V which
are equivalent to those of (201) plane of Pt-phthalocyanine. The dotted line represents the case
of a parallel beam.

As can be seen from equation (60), the intensity profile of the fringe varies with the
term §1"(0,) (Abyp)% Consequently, if a crystal which is at a position deviating from
the Bragg angle is irradiated by a divergent beam, both the position and the intensity of
the fringes change from those of parallel illumination. If the crystal which is at the exact
Bragg angle is irradiated by a divergent beam, equation (60) turns out to be
pG*

I(:I:AﬁAo) == lwﬁqacosg

0 ,

{%‘-12 — (A0 2} sin dmgZ 1 4mqZ(Ad,,)? cos 47qu] Sin 278 - x.
(62)

In figure 19, intensity profiles of the fringes at the exact Bragg angle for crystals which

are illuminated by divergent beams of Af,, = 5 x 10~3rad are indicated. As can be seen
from equation (62) and figure 19, the position of fringes does not change but the contrast
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of the fringes is decreased and, moreover, the contrast of the fringes does not reverse at the
thickness 1/4¢g but reverses at the thickness

1 G?

1g 24g (A00)%,

i.e. the period of half integral value of the extinction distance is decreased by an amount

G?
525 (A0:0)°
which is, for example, equivalent to 35 A for Pt-phthalocyanine irradiated with a divergence

Af,y = 5x1073rad.

As can be seen from equation (62), at a certain angle of divergence, the contrast of the
fringes becomes zero, i.e. the fringes disappear in the continuous background. This critical
angle of divergence (Ad,) is given by

(A0,)? = 6¢?%sin 4mqZ|G?(sin 4nqZ — 4mqZ cos 4mqZ) (63)

and is tabulated in table 1 for the values of spacing a and thickness Z.

TABLE 1. CRITICAL VALUES OF SEMI-ANGLE OF DIVERGENCE
FOR WHICH THE FRINGES ARE NOT OBSERVED

a=>50A a=12A a=5A
V=1V v, =24V 7, =5V
¢z Z(A) A6, Z (A) A6, Z (A) A6,
0 0 0 0 0 0 0
i 390 8 %102 166 4.6 x 102 80 4 %102
& 780 3:8x10-2 333 2:1 x 102 160 1:6 x 102
55 1170 2:1x10-2 498 1-2 x 102 240 1-0 x 102
&5 1560 0 666 0 320 0
5 1950 —_ 830 — 400 —_—
Y 2340 37 %102 999 21 x102 480 1:6 x 102
a 2730 1-5x 102 1162 8:6x 103 560 7-4%x10-3
] 3120 0 1332 0 640 0

At larger angles than those tabulated in table 1, according to equation (62), the fringes
will show some contrast. In the ordinary electron microscope, however, the objective lens
has certain spherical aberration which is given by C «?, where C; is the aberration coeffi-
cient and « is the angle between the axis of the lens and a scattered beam. Calculation
suggests that at larger divergences than Af,, ~ 10-2, fringes of spacing 12 A will lose contrast
when imaged by a lens of aberration coefficient C; ~ 0-3 cm. Therefore, in order to obtain
fringes with some contrast, the semi-angle of divergence has to be smaller than those in
table 1.

7. COMPARISON WITH EXPERIMENT

According to the foregoing interpretation, we should observe the anomalies both in
spacing and in contrast of the fringes of plate-shaped and wedge-shaped crystals at the
positions deviating from the Bragg angle.

In a bent plate-shaped crystal, the fringes will show the anomalies both in spacing and
in contrast at the edges of principal extinction contours and on the subsidiary contours as
shown in figure 8.

59 Vor. 253. A.
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Figure 20 (a), (b), plate 5, are the micrographs of Pt-phthalocyanine taken by Menter
with 10 and 30 objective apertures respectively. In figure 20 (a), all Bragg reflected waves
are excluded from the image except the zero order, so one can observe only the extinction
contours at the positions indicated by arrows. Extinction contours consist of parallel lines
and so it can be deduced that this film has a small bending around one direction parallel
to the extinction contour. The strong contour and the weak contours seem to correspond
to the principal and subsidiary maxima of the Bragg reflexion respectively. In figure 20 (5),
the first order of the (201) spectrum of the Bragg reflected waves is included in the image so
that the lattice fringe is resolved. Figure 20 (¢) is an enlargement of the enclosed region in
(), which indicates that the lattice fringes are clearly resolved and have a spacing anomaly
on the principal contour and subsidiary contours.

In order to show the anomaly in spacing and shift of the fringes, a scale of constant spacing
is superposed on the fringes. As can be seen in figure 20 (¢) about 10 lines near the centre of
principal contour coincide with the scale but near the edge of the contour, lines in the
fringe do not coincide with the scale. Lines formed on the edge of the subsidiary contour
are shifted about half of the spacing relative to those on the edge of the principal contour
and have increased spacing.

The appearance of the observed fringes coincides with that of the theoretical ones corre-
sponding to the thickness 1/8¢ shown in figure 8. But in order to compare the observed
fringes with the theoretical ones quantitatively, it is necessary to know the thickness of this
crystal and the Fourier coefficient of the inner potential. If the subsidiary maxima of
electron diffraction were observed in a Kossel-Moéllenstedt pattern (Kossel & Méllenstedt
1939) or in a high resolution electron diffraction pattern (Hashimoto 1954; Uyeda et al.
1954) the thickness of the film and Fourier coefficient of the inner potential would be
determined at the same time. At present, however, we have no such measured values.
From the structure of Pt-phthalocyanine obtained by Robertson & Woodward (1940) and
the atomic scattering factor for electrons obtained by Ibers (1958), the Fourier coefficient of
the inner potential can be calculated as 2-4V for the (201) plane. Then, the value 1/8¢
written in figure 8 corresponds to a thickness 300 A for the crystal irradiated by 80kV
electrons. In the present case, it seems to be not incompatible with the observed relative
darkness of the image of the crystal compared with that of the vacuum to assume that the
thickness of the crystal is about 300 A. Therefore, it may be concluded that the coincidence
between theory and observation is satisfactory.

Figure 21 (a), plate 6, is a micrograph of Cu-phthalocyanine (Hashimoto & Yotsumoto
1959). In this micrograph, there is a notable intensity anomaly; it is so striking that it
seems as if due to the thickness anomaly. Even though it is not clear from the present
observation whether the crystal has some anomaly in thickness or not, according to the

. preceding interpretation, the intensity anomaly is expected to be accompanied by a spacing
anomaly if the crystal has a small bending.

In order to check the anomaly in spacing, one part of the rmcrograph which is outlined,
was enlarged and cut into two parts across the fringes (perpendicular to the lines) and one
of them arranged upside down as shown in figure 21 (5).

The lines indicated by the arrows coincide with each other on both parts of the micro-
graphs but the lines between the arrows do not. It can be observed that the spacings of the
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Frcure 20. (a) Principal extinction contour and its subsidiaries in a bent crystal of Pt-phthalo-
cyanine imaged with 10 objective aperture so as to pass only the zero-order beam. (Magn.

x 200000.)
(b) Same crystal imaged with 30 u aperture, showing the fringes of the crystal lattice formed

. on extinction contours. (Magn. x 200000.)

:é (¢) Enlargement of enclosed region in (4), on which a scale is superposed, showing that the
e > fringes have constant spacing near the centre and increased spacing near the edge of the prin-
olm cipal contour, and the fringes on the subsidiary contours have increased spacing (see figure 8).
(=7 E {Magn. x (1500000.) (Courtesy J. W. Menter, 1958, Phil. Mag. Suppl. Advances in Physics,
= O 7, p- 131,
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(@) (b)

Freure 21. (a) Electron micrograph of Cu-phthalocyanine showing the spacing anomaly of the
fringe. Enlargements () of enclosed regions, one of which is arranged upside down, indicate
that the lines between two lines marked by two arrows shift to each other on both parts of the
micrograph. (a) Magn. x 2200000; (b) magn. x 5000000. (Courtesy Nature,1959,183, p.1001.)

-—(a)
~—(b)
=-—(¢)
~—(d)

Ficure 23. Fringe of sodium faujasite showing the stepped structure. By viewing obliquely steps
of the fringes are detected along the contours (a), (4), (¢), (d) and (¢). (Magn. x 800000.)
(Courtesy J. W. Menter, 1958, Phil. Mag. Suppl. Advances in Physics, 7, p. 132.)
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weak lines are larger than those of the strong ones. By viewing obliquely along the lines, it
can be seen that the amount of shifts between two corresponding lines becomes nearly
a quarter of the spacing.

In order to compare the observed spacings with theoretical values quantitatively, it is
necessary to know the thickness of this film and the Fourier coefficient of the inner potential.
By referring to the structure of Ni-phthalocyanine (Robertson & Woodward 1937), the
Fourier coeflicient of inner potential of Cu-phthalocyanine was calculated as 3:3 V for the
(201) plane. Then, the value 1/8p written in figure 8 corresponds to 240 A for the (20T)
plane.

In the present observation, the thickness and the mode of bending cannot be known
exactly. The thickness, however, is supposed to be about several hundred angstroms and
the local bending which is always present in a thin plate-shaped crystal is expected to be
larger than the angle § = 8 x 103 rad, which is necessary for the fringe shift of a quarter of
the spacing. The present theory, therefore, seems to explain essentially the present
observation.

In Zn-phthalocyanine fringes the spacing anomaly and a corresponding intensity anomaly
of the fringes, similar to those of Cu-phthalocyanine, were also observed.

In antigorite fringes taken by Yotsumoto (1958), the spacing anomaly was also observed
where there was an anomaly of intensity. The region with a spacing anomaly moves as the
region with an anomaly of intensity moves, possibly as a result of a buckling of the crystal
during the observation. In antigorite, however, the spacing of the fringes is about 90 A and
the thickness of the film is several hundred angstréoms. Therefore, the fringes are expected
to be formed by the interference of Bragg reflected waves of several orders from the same
lattice plane. Then, the spacing anomaly in antigorite fringes may not strictly be inter-
preted by the present theory. However, it is evident that the wave vectors will change with
the deviation from the Bragg angle, and so the shape of the fringes changes with the deviation
from the Bragg angle.

In a wedge-shaped crystal, as was stated in the preceding section, there was a periodic
reversal of contrast in the fringes. At the exact Bragg angle such a reversal of contrast is
at each halfintegral value of the extinction distance (1/2¢) and at a position deviating from
the Bragg angle such a reversal occurs at an integral multiple of the extinction distance.
If the fringes are not parallel to the apex of the wedge, the fringes are observed to have
a stepped structure at the centre and between the extinction contours.

If a wedge-shaped thin crystalline film has some bending and one Bragg reflexion is
excited, variation of the fringes due to the thickness anomaly and the deviation from Bragg
angle will be observed at the same time. In figure 22, the mode of bending of the crystal
and the variation of the fringes are schematically illustrated (absorption of electrons has been
taken into account). :

Figure 23, plate 6, shows fringes of sodium faujasite taken by Menter. The thickness of
the crystal decreases from the lower to the upper side and the fringes are nearly perpen-
dicular to the apex of the wedge. By viewing obliquely, stepped structures (reversal of
contrast of the fringes) can be detected along the five contours indicated by arrows (a),
(), (¢), (d) and (¢). The mode of the stepped structure in the micrograph is quite similar to
that of one portion of the illustration shown in figure 22.

59-2
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In order to interpret the appearance of the fringes of sodium faujasite quantitatively,
it is necessary to know the angle of wedge («') and the Fourier coefficient of inner potential
V. of the crystal. At present, we have no method of measuring them. However, if we assume
these values as o’ = 0-5rad (28°40") and V, ~ 10V, the period of the stepped structure
becomes 300 A at the exact Bragg angle and 600 A at positions deviating from the Bragg
angle. The assumed values are seen to be not incompatible with those of sodium faujasite
and the calculated period of the stepped structure is nearly equal to the observed value.
The fringes formed on the right of this micrograph have steps of shorter period than the
ones on the left. This may be due to the larger angle of the wedge of crystal, i.e. the variation
of thickness is larger.

cmmme
menenmecen. -

T

il

Ficure 22. A wedge-shaped thin crystalline film with small bending and the corresponding
theoretical lattice fringe. (Absorption of electrons has been taken into account.)

Along the contours indicated by arrows (4), (c), (d) and (e), it can really be detected that
there are weak traces of the fringes and the intensities of the traces become larger with
increasing thickness. The amount of the steps of the fringes becomes less with increasing
thickness. By referring to figures 15 (a) and 17, such traces of the fringes along the
contours (b), (¢), (d) and (¢), and the decrease of the relative shift of the steps are seen to be
due to the absorption of electrons.

8. CONCLUSION

The present theory has explained the fine structure of the fringes of metal phthalocyanine
and sodium faujasite satisfactory and, therefore, it seems to be essentially correct for the
interpretation of the fringes of crystal lattices.

The present theory, however, is applicable only to the case of one Bragg reflexion excited
in the crystal. In the case where two or more Bragg reflexions are excited from lattice planes
of the crystal at the same time, the present theory does not hold any longer. In antigorite
fringes, for example, as the spacing is about 90 A, the fringe is supposed to be formed by the
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several waves reflected from a lattice plane simultaneously. In such a case, as was cal-
culated by Heidenreich (1950), Hoerni (1956), Kohra (1954) and Kambe (1957), waves
in the crystal will be derived by solving the secular equation of several orders. Even in such
a case, if one reflected wave is much stronger than the others, the present theory may be
applicable as the first approximation.

Even if the resolving power of transmission electron microscopes is improved very much
and reaches, for example, about 0-1 A, the atomic arrangement in a crystal will still not
be revealed in a single image so long as the crystal has a three-dimensional structure. The
crystal lattice fringes, as was stated in § 3, do not represent the potential distribution in the
crystal. However, if many sets of fringes corresponding to the lattice planes of a crystal are
recorded by inclining the illuminating system, it would not be impossible to reveal the
atomic arrangement in the crystal such as is shown in a Fourier projection of the inner
potential.

As was indicated in § 3, if a crystal is at the exact Bragg angle for a lattice plane g, the
intensity profile of the fringe is given, from equations (33), (35), (36), (36a), and (25), as

. (2w .
I=1—sin {/I—EZIK"}SIH (2ng T —¢), (64)

where cosf, = cosf, = 1. It must be noted here that the phase angle ¢ of the crystal is

represented as a shift of the fringe by an amount of ag/27 and the amplitude of the fringe

is given by the function of both thickness Z and Fourier coefficient of periodic potential

V, of the crystal. If the fringes shift laterally by an amount of {a (= 4m), the intensity dis-

tribution is given b
8 Y I=1+D,cos (2mg T —p), (65)

. (2w
where D, = sin {IEZ ]V;I} (66)

D, may be called the dynamical structure amplitude for electrons and, for the crystal
with small thickness, may be given by

2
D, =EZII§| (67)

If many sets of fringes corresponding to #£0 reflexion spots of a thin plate-shaped crystal
whose surface is parallel to the xy plane of the crystal are recorded each at the exact Bragg
angles by inclining the illuminating system, a two-dimensional projection on the xy plane
of the potential distribution in crystal would be obtained as follows: Many sets of fringes
corresponding to £kO reflexions are taken under the same experimental conditions, and
a corner of the crystal or a heavy atom like platinum deposited on the exit surface of the
crystal is recorded at the same time as a reference point to decide the origin. These are
superposed successively after being shifted laterally by an amount }a,,,. The integrated
intensity distribution of the fringes formed by the superposition of the z sheets of photographs
of the fringes is given by

P(x,9) = n+3 3 Dyycos 2n(le-+ky) — o

1 , .
= [0+ 33 [V cos @n(l-+ ) — g (68)
where 4" = AE/2nZ.
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It can be seen easily from equation (68) that the process of superposition is equivalent
to Fourier synthesis.

If the crystal is thick, the approximation of equation (67) holds no longer. Insuch a case,
it is necessary to obtain the corresponding fringes with amplitudes |V,,,| from the observed
fringes of amplitude D,,,. The corresponding fringes with amplitudes |V,,,| can easily be
obtained by using the equation (66), if the thickness of the crystal is measured, for example,
from the spacing of subsidiary maxima of electron diffraction spots. The correction of the
amplitude due to the thickness of the crystal may correspond to the process which is utilized
in structure analysis by electron diffraction methods for eliminating the so-called dynamic
extinction effect.

In the case of a very thick crystal, the effect of absorption of electrons cannot be neglected.
Then, in order to obtain corresponding fringes of amplitude |V,,,|, the effect of absorption
described in § 5 has to be taken into account.

The authors would like to express their sincere thanks to Professor K. Tanaka and
Professor R. Uyeda for encouragement and helpful discussion during the course of this
work, and to Professor A. H. Cottrell, F.R.S., for his help in facilitating the publication of
this paper. We would also like to acknowledge our thanks to Dr J. M. Cowley for his
interest and helpful discussions in this work and to Dr J. W. Menter for providing copies
of his micrographs.
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FiGure 20. (a) Principal extinction contour and its subsidiaries in a bent crystal of Pt-phthalo-
cyanine imaged with 10 objective aperture so as to pass only the zero-order beam. (Magn.
x 200000.)

(b) Same crystal imaged with 30 u aperture, showing the fringes of the crystal lattice formed
on extinction contours. (Magn. x 200000.)

(¢) Enlargement of enclosed region in (4), on which a scale is superposed, showing that the
fringes have constant spacing near the centre and increased spacing near the edge of the prin-
cipal contour, and the fringes on the subsidiary contours have increased spacing (see figure 8).
Magn. x (1500000.) (Courtesy J. W. Menter, 1958, Phil. Mag. Suppl. Advances in Physics,
2, po 13l
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(a) Electron micrograph of Cu-phthalocyanine showing the spacing anomaly of the
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‘IGURE 23. Fringe of sodium faujasite showing the stepped structure. By viewing obliquely steps
of the fringes are detected along the contours (a), (b), (¢), (d) and (e).. (Magn. x 800000.)
(Courtesy J. W. Menter, 1958, Phil. Mag. Suppl. Advances in Physics, 7, p. 132.)
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